

IEBusTM Dummy Board For Macro Language

 Application Corporation
 5-8-18 Haramachida Machida-city, Tokyo 194-0013, Japan

 TEL. +81-42-732-1377 FAX. +81-42-732-1378
http://www.apply.co.jp/

 Ver.1.0 2003.03.25

Table of contents

1. Outline ..1
2. Structure ...2
3. Explanation of each part ...3
4. Installation of terminus resistance...5
5. Software..6

5.1. Install..6
5.2. Execution ...6

5.2.1. [setting] button ...6
5.2.2. [Macro open] button...7
5.2.3. [Execution] button ..7
5.2.4. [Abort] button ...7
5.2.5. [TEIKI] button...8
5.2.6. [KEY] button ..8
5.2.7. [ERROR] button...8
5.2.8. [Massage] button ...8
5.2.9. Key up / Down ...8

5.3. Uninstall ...8
6. Macro language specification ...9

6.1. Comment..9
6.2. The model of a variable and declaration ..9
6.3. Constant... 11
6.4. Label .. 11
6.5. Procedure... 11
6.6. Operation ... 11
6.7. Flow control command ... 12
6.8. Other command ... 13
6.9. The command for CSV type command .. 17
6.10 The variable of a system definition .. 18
6.11. Sample macro .. 18

7. Communication specification .. 22

 - 1 -

1. Outline

This is the development support equipment for debugging the IEBus communications
department of the equipment which the customer developed as dummy equipment of an
IEBus unit using a personal computer.
IEBus communication can be transmitted and received with this equipment using the
RS-232C part of a personal computer. It is possible to correspond to more complicated
protocol by the macro language (AP-Macro) operated on Windows.
Moreover, a communication program can be easily created now by newly developing the
macro language which specialized in IEBus. Please use it for the case where the
communication place of IEBus is developing, a test of operation etc..
When you carry out the monitor of all the data that flows on IEBus, please use “AP-IEB2” of
product of our company.

 - 2 -

2. Structure

Figure

Required apparatus

Personal computer Windows95/98/Me/2000/XP operate and a RS-232C port has
1channel or more.

RS-232C cable A straight cable with 9pinD-Sub female connector (this
equipment side) and a personal computer side connector.

Customer’s equipment Equipment which communicates by making IEBus connection.

Attachments

IEBus dummy board Equipment which changes communication and RS-232C of
IEBus.

Exclusive wire harness There are 2 kinds of harness. One is with the alligator clip and
the other is without the alligator clip.

AC adapter +12V output
Exclusive soft Windows95/98/Me/2000/XP application soft which controls this

equipment.

Manual

Customer’s
equipment

AP-ALDM2

apply

GND

GND

TX+ TX－
IEBus

RS-232C

Personal computer

Install

Software

AC adapter

 - 3 -

3. Explanation of each part

1. The connector which connects the wire harness
 The harness with the alligator clip or without the alligator clip is connected by it.

 Green alligator clip TX+ (1pin)
 Blue alligator clip TX- (2pin)
 Black alligator clip GND (3pin)

None +12V (4pin)

2. The rotary switch for a setup of the unit address H (bit 11 ~ 8).
3. The rotary switch for a setup of the unit address M (bit 7 ~ 4).
4. The rotary switch for a setup of the unit address L (bit 3 ~ 0).

When a unit address is set as 123h, it sets up below.
 Unit address H 1
 Unit address M 2
 Unit address L 3

1 2 3 4

If the attached AC adapter cannot supply
[DC IN] with the power, please supply from
this +12V.
There are the continuity between +12V and
[DC IN].

 - 4 -

5. RS-232C connector

Please connect with COM1 or COM2 by the side of personal computer by the straight
cable of RS-232C

6. POWER lamp
The light switches on when a power supply is ON.

7. DC IN connector
 It connects the attached AC adapter.

5 6
7

 - 5 -

4. Installation of terminus resistance
In this equipment, 68 ohm and 1/8W resistance is mounted. When you use it as the
terminus resistance, you open the body and short the jumper-short-pin JP1.

 How to open the body

Please lift the upper part while you hold 4 points of the lower part like the following
figure.

AP-ALDM2

apply

 - 6 -

5. Software
5.1. Install
 Please put appending FD into a personal computer and perform setup. exe.
 Please specify the holder to install according to the message displayed.

5.2. Execution
 If install normally, since the group of ApSim will be made, apsim. exe is performed from

here

 The screen at the time of starting

5.2.1. [setting] button
 The COM boat which has connected AP-ALDM2 can be set up.

 - 7 -

5.2.2. [Macro open] button
The macro file to perform is specified.

 The screen after loading

5.2.3. [Execution] button
 Loaded macro is executed.

5.2.4. [Abort] button
 Macro under execution is forced to terminate.

 - 8 -

5.2.5. [TEIKI] button
 A TEIKI message window is displayed.

Only a first one command displays the contents of execution of fixed transmitting
processing.

5.2.6. [KEY] button
 A KEY message window is displayed.
 When the key input defined in macro occurs, only one command displays the

contents of execution first.

5.2.7. [ERROR] button
 An ERROR message window is displayed.
 Generating of an error displays an error code and an error line on a window during

macro execution.

5.2.8. [Massage] button
 A MAIN message window is displayed.
 The message which used the ECHO sentence (refer to macro language

specification) is displayed.

5.2.9. Key up / Down

The event when clicking the button for key events (0 ~ 9, an arrow, F1 ~ F9)
currently displayed on the window is setup.
If it is set as [KEY DOWN], the click of each button will be processed as “having
detached the key”.
If it is set as [KEY UP], the click of each button will be processed as “having
detached the key”.
It is not influenced by the setup here when actually operation a keyboard. It is setup
when clicking a button with a mouse.

5.3. Uninstall
 Apsim can be chosen and deleted from “an addition and deletion” of a control panel of

application.

 - 9 -

6. Macro language specification

The language specification of AP-Macro is explained. AP-Macro describes one
command to one line. In Apsim, this is interpreted in interpreter and it performs it one
line at a time.

6.1. Comment

In AP-Macro, it becomes a comment after the “#” (character) when these is a “#”
(character) at the beginning of a line, the whole line is treated as a comment, this is
treated as a comment from the portion, when there is a “#” (character) from the middle
of a line, and it is disregarded at the time of execution.

 Example:
 # Transmission of a frame
 SEND frame0
 RECV frame1 # Receive the reply to the transmitted frame

6.2. The model of a variable and declaration

A variable can be used in AP-Macro. There are an IDATA type, an INT type, an IFRAME
type, and an IFMASK type as model.
The small letter of the alphabet must describe the 1st character of a variable. The
character that can be used for a variable are only the alphabet, an underline, and a
number, and the number of the maximum characters is 255 characters.

<IDATA type>

An IDATA type is used for the arrangement of the byte value of the fixed size of 255
bytes defining the arrangement of IEBus frame data. Each entry is 8 bit value
without a mark.

 Example:
 IDATA a={0x00,0x12,0x13}
 a[10]=0x55

<INT type>

An INT type is used for defining an integral value. An integral value is 32 bits (with a
mark 4 bytes) in size. As a value, it is a value to –2G (GIGA) ~ +2G (GIGA). The
value of an INT type variable can also be substituted for each members (adr, etc.) of
each IDATA type., entry, IFRAME, and IFMASK. At this time, only the low rank bit of
32 bits of INT models is substituted as mark-less number.

 Example:
 IDATA a
 INT y=1
 a[2]=y

If it restricts to an INT type, it can treat also as arrangement to dimensional 1 and 2
dimensional.

 - 10 -

 Example:
 INT y[2]
 y[0]=50
 y[1]=30

 INT x[2][3]
 x[0][2]=50
 x[1][2]=30

<IFRAME type>

An IFRAME type defines the IEBus frames It is a structure object internally and
each member is as follows. The same system as the C language performs access
to each member. The value currently initialized about no member us 0.

 IFRAME {
 INT bit Broadcast bit
 INT adr Slave address
 INT size Message length
 IDATA data Frame data arrangement
 }

 Example:
 IFRAME frame0
 IDATA a
 frame0.data[3]=5
 frame0.data=a
 IFRAME frame1={1,0x123,5,0x00,0x01,0x02}

 Supplement)

Above, 1 is the broadcast bit. 0x123 is the slave address. 5 is the message length.
Subsequent 0x00, 0x01…. is the data. And the area of 255-byte fixation is secured
inside like a DATA type.
The portion that is not initialized is 0x00.
Broadcast bit is broadcast with 0. Not broadcast bit is broadcast with 1.

<IFMASK type>

An IFMASK type defines an IEBus frame mask. This is used when carrying out the
comparison check of the value and regulation value which used the
below-mentioned CHECK command and masked at a part of received from. Since it
is the same as an IFRAME type, completely similarly [the access method etc.]
internal comparison can be performed.

 Example:
 IFRAME checkframe={1,0x123,5,0x00,0x01,0x02}
 IFRAME recvframe
 IFMASK fmask={0,0xffff,0x0,0xff,0xff,0xff}
 RECV recvframe
 CHECK checkframe recvframe fmask

 Supplement)

In the above-mentioned IFMASK declaration this broadcast bit is a non-mask
(besides for a check). A slave address is a mask (candidate for a check). Message
length is a non-mask (besides for a check). The amount of first 3 bytes of data is
mask (candidate for a check). The command which takes the frame received by the
RECV command and the frame declared as checkframe by fmask, and compares
“AND” is the CHECK command.

 - 11 -

6.3. Constant

A constant can be used in AP-Macro. A constant value is the same specification as
the C language. The numerical value to which x are attached to the head is
hexadecimal number. The numerical value to which 0 is attached to the head is
octal number. It is decimal number if nothing is attached.
A contact is used for substitution of the initialization value of a variable, and a value,
a shift value etc.

6.4. Label

A label can be used in AP-Macro. A label is used when the position of a macro file
is shown as destinations, such as the below-mentioned GOTO command and IF ~
THEN command etc. The effective range of a label (scope) is only the inside of
procedure (oral statement). Conversely, the label inside procedure cannot be
referred to from a main processing part.
The small letter of the alphabet must describe the 1st character of a label. Moreover,
the characters that can be used for a label are only the alphabet, an underline, and
a number of the maximum character is 255 characters.

 Example:
 label0:

It is the line which finished with the “:” character as mentioned above and starts by
the label name of a small letter. Other command etc. cannot be described in the line
which described the label.

6.5. Procedure

AP-Macro can be described a mass of processing of procedure. Procedure is
registered as procedure for the below-mentioned fixed processing. Procedure is
registered as procedure for key procedure. It is for calling as a subroutine by the
GOSUB command.

 Example:
 PROC proc0
 ……….Description of processing
 ENDPROC

It surely starts in PROC as mentioned above, and must be finished as ENDPROC.
Execution of GOTO to the label out of PROC is restricted in the same PROC (the
same is said of the label of IF). Moreover, don’t perform setup of fixed transmission
or key input, and release within PROC.

6.6. Operation

AP-Macro can describe the substitution and operation to a variable. The kind of
operation which can be described to one line as a formula is shown below.

 a[3] += 5 Addition of a constant value
 a[3] -= 5 Subtraction of a constant value
 a[3] |= 5 Logical sum of a constant value

 - 12 -

 a[3] &= 5 The logical product of a constant value
 a[3] /= 5 Division of a constant value
 a[3] *= 5 Multiplication of a constant value
 a[3] <<= 5 Left bit shift
 a[3] >>= 5 Right bit shift
 a[3] = 5 Substitution of a constant value
 a[3] += b Addition to a variable
 a[3] -= b Subtraction of a variable
 a[3] |= b Logical sum of a variable
 a[3] &= b The logical product of a variable
 a[3] /= b Division of a variable
 a[3] *= b Multiplication of a variable
 a[3] <<= b Left bit shift
 a[3] >>= b Right bit shift
 a[3] = b Substitution of a variable

However, the variable type of left position must be the same.
Moreover, between left position, a operator, and right position, the blank (a blank
character or TAB) must be contained. A blank must not be between + of a operator,
etc. and =.
About logical sum, a logical product, and bit shift operation, the INT type which it is
with a mark as a variable is also treated as a value without a mark.

6.7. Flow control command

There is the following as a command of the flow control in AP-Macro.

<SWITCH ~ CASE command>
As a parameter of the SWITCH command, you have to specify a variable name.
The model of a variable can specify each INT type or IDATA type entry, IFRAME
type, and IFMASK type member.
The nesting structure of including a SWITCH ~ ENDSWITCH command into a
SWITCH ~ ENDSWITCH command can also be described.

 Example:
 IDATA abc
 SWITCH abc[3]
 CASE 0
 ……… Description of processing
 ENDCASE
 CASE 0x11
 ………. Description of processing
 ENDCASE
 CASE 0x22
 ………. Description of processing
 ENDCASE
 CASE DEFAULT
 ………. Description of processing
 ENDCASE
 ENDSWITCH

<IF ~ THEN command>

It files to the label described after THEN according to the evaluation result of a
formula described after IF. The variable with a mark is treated as a variable with
a mark. The variable without a mark is treated as having no mark.

 - 13 -

 Example:
 IF a != 0 THEN label0
 IF a == 0 THEN label0
 IF a & 1 THEN label0
 IF a < 1 THEN label0
 IF a > 1 THEN label0
 IF a <= 1 THEN label0
 IF a >= 1 THEN label0

<WHILE command>

While the evaluation result of a formula described after WHILE is true,
processing to ENDWHILE is performed. The nesting structure if including a
WHILE ~ ENDWHILE command into a WHILE ~ ENDWHILE command can be
also be described.

 Example:
 WHILE a! =0
 ………. Description of processing
 ENDWHILE

<GOTO command>

It files to the label described after GOTO.

 Example:
 GOTO label0

<EXIT command>

Macro processing is made to finish compulsory. It specifies without a parameter,
and a broad view will be ended if EXIT is performed. However, this command
cannot be used within procedure.

 Example:
 EXIT

6.8. Other command

In addition to this in AP-Macro, there are the following commands in addition to
the command for the below-mentioned CSV file type.

<WAIT command>

The part sleep is specified and carries out. (unit: mS)

 Example:
 WAIT 100

<SEND command>

The specified frame is transmitted.

 Example:
 SEND frame0

<RECV command>

A frame is received to the specified variable. A timeout value (unit: mS) can be
specified. A timeout can be also omitted. (At the time of an abbreviation, it does
not carry out a timeout but receives.)
If the timeout occurs, -1 is set to the system definition variable errno.
If it is received normally, 0 is set to it.

 - 14 -

 Example:
 RECV frame0 100

<CHECK command>

Only the portion of 1 check the specified frame by the pattern specified by the
IFMASK type variable. 0 is set to the system definition variable errno which will
be later mentioned if the compared result is equal, and –1 will be set if not equal.

 Example:
 IFRAME checkframe={1,0x123,5,0x00,0x01,0x02}
 IFRAME recvframe
 IFMASK fmask={0x0,0xffff,0x0,0xff,0xff,0xff}
 RECV recvframe
 CHECK checkframe recvframe fmask
 IF errno != 0 THEN label_error
 ECHO check OK
 ………. Description of processing
 label_error:
 ECHO check error

 Supplement)

In the above-mentioned IFMASK declaration, this broadcast bit is a non-mask (besides
for a check). An address is a mask (candidate for a check). Massage length is a
non-mask (besides for a check). The amount of first 3 bytes of data is a mask (candidate
for a check). The frame received by the RECV command and the frame declared as
checkframe are taken by fmask and “&” is compared.

<KEYGOTO command>
The jump place label jumped when the specified key is pushed, or when it is
detached is defined. Keys are the number of 0 to 9, the function key of f1 ~ f9,
the arrow key of up/ down/ left/ right, and the alphabetic character (there is no
distinction of a capital letter and a small letter) of a ~ z.

 Example:
 KEYGOTO 0 label0 (u)

“u” behind a label is omissible as an option. If it specifies, it will become the
definition at the time of detaching a key.

<KEYGOSUB command>

Key processing procedure performed when the specified key is pushed, or when
it is detached is defined. Keys are the number of 0 to 9, the function key of f1 ~
f9, the arrow key of up/ down/ left/ right, and the alphabetic character (there is
no distinction of a capital letter and a small letter) of a ~ z.

 Example:
 KEYGOSUB 0 proc0 (u)

“u” after a procedure name is omissible as an option. If it specifies, it will
become the definition at the time of detaching a key.

<BEEP command>

The beep sound defined by the system is sounded. minfo (message information)
of a parameter, mwarn (message warning), syserr (system error), mques

 - 15 -

(inquiry), and OK (general beep sound) are each sound assigned by [control
panel] – [sound]. It does not sound, when there is no sound card in a personal
computer and volume is extracted. pc of parameter is beep sound of built-in
speaker. These either can be specified.

 Example:
 BEEP pc/minfo/mwarn/syserr/mques/ok

<TEIKI command>

Fixed processing procedure us registered. The number which can be registered
is from 0 to 9. The last parameter is the time interval of a milli second unit.

 Example:
 TEIKI 0 proc0 100

<TSTOP command>

Registration cancellation of fixed processing procedure is carried out.

 Example:
 TSTOP 0

<ECHO command>

A specification character sequence is displayed on a debugging character
sequence display window.

 Example:
 ECHO This is a debugging program.

<GOSUB command>

Procedure is called. Since a calling agency is saved at an internal stack, it is
also possible to call procedure further from called procedure.

 Example:
 GOSUB proc0

<XOR command>

Exclusive logical sum operation of the variable specified to be the left side, and
the variable/ constant specified to be the right side is carried out, and a result is
substituted for the left side. The specified variable/ constant are treated as a
value without a mark. Only one element can be specified variable is an
arrangement variable.

 Example:
 INT a=0xffffffff
 INT b=0xCCCCCCCC
 INT c[2][3]
 XOR a 0x30303030
 XOR a b
 c[1][0]=0xdddddddd
 XOR c[1][0] b

<INV command>

Bit reversal of the specified variable is carried out, and a result is substituted. The
specified variable/ treated as a value without a mark. Only one element can be
specified when the specified variable is an arrangement variable.

 - 16 -

 Example:
 INT a=0xffffffff
 INT c[2][3]
 INV a
 c[1][0]=0xdddddddd

INV c[1][0]

<INCLUDE command>
A file included and it develops in the place. The file name or extensions of an
included file are not cared about anything. It surrounds by “” and the full pass of a
file is specified. It becomes a current directory when a path is omitted.

 Example:
 INCLUDE “file.inc”
 INCLUDE “c:¥user¥file.inc”

<DEFINE command>

The replacement character sequence of a constant or a variable is defined. A
replacement character sequence must be a character sequence which starts in an
English small letter like a variable. Moreover, don’t overlap a variable name, a label
name, a PROC name, and a command name. A definition is possible to 256 pieces.
It can’t define only the member if a variable. Moreover, the inside of the character
sequence surrounded by “” can’t be defined.

 Example:
 DEFINE abcd 1
 DEFINE aa55 frame.data[1]

<TIMEGOSUB command>

Procedure performed after the appointed time (milli second) is defined. The number
which can be registered is from 0 to 9. Timer execution is a one time and is
applicable to timeout processing etc. Periodic timer processing should use the
TEIKI command.

 Example:
 TIMEGOSUB 0 proc0 800

<TIMEGOTO command>

This label into which an execution position is changed is defined after the appointed
time (milli second). The number which can be registered from 0 to 9. Timer
execution is a one time and is applicable to timeout processing etc. Periodic timer
processing should use the TEIKI command. The restriction matter (scope) of a label
is the same other cases, and is restricted in the same PROC or main processing.

 Example:
 TIMEGOTO 0 label0 800

<TIMESTOP command>

Registration cancellation of procedure and label branch which the TIMEGOSUB
command and the TIMEGOTO command defined is carried out. A number is from 0
to 9.

 Example:
 TIMESTOP 0

 - 17 -

6.9. The command for CSV type command

In AP-Macro, the file (text file of the one-line one record which divided each field with
the comma) of CEV type can be used. The command for using the file of CSV type is as
follows.

<COPENR command>

CSV type file is read and it opens in the mode. The file name or extension of a file is
not cared about anything. It surrounds by “” and the full pass of a file is specified. It
becomes a current directory when pass is omitted. Reading of the file after this is
altogether performed to this file.

 Example:
 COPENR “c:¥user¥frame.csv”

<COPENW command>

CSV type file is read and it opens in the mode. The file name or extension of a file is
not cared about anything. It surrounds by “” and the full pass of a file is specified. It
becomes a current directory when pass is omitted. Reading of the file after this is
altogether performed to this file.

 Example:
 COPENW “c:¥user¥frame.csv”

<CCLOSE command>

The file opened by COPENR or COPENW is closed. It distinguishes in the ‘R’
character or the ‘W’ character.

 Example:
 CCLOSE R
 CCLOSE W

<CLOAD command>

It reads into the variable specified from the file opened in reading mode by one
record (one line). Specification of arrangement element and one member can also
be performed like “data0[3]” and “frame.bit”. The data (data which had not gone
into a variable) of the field in which it remained in a part for one record is thrown
away. The variable of the 1-dimensional arrangement and the variable of
2-dimensional arrangement of an IDATA type or an INT type, not only specification
of one element but specification of the whole arrangement and specification called
the whole sequence of 2-dimensional arrangement can be performed.

 Example:
 INT int0
 INT int1[2]
 INT int2[2][3]
 CLOAD frame0
 CLOAD frame0.bit
 CLOAD data0
 CLOAD data0[2]
 CLOAD int0
 CLOAD int1
 CLOAD int1[1]
 CLOAD int2
 CLOAD int2[1]
 CLOAD int2[1][1]

 - 18 -

<CSAVE command>

The constant of the variable specified to be the file opened in beginning mode are
written out by one record (one line). Specification of 1 arrangement element and one
number can also be performed like “data0[3]” and “frame.bit”.
The variable of the 1-dimensional arrangement and the variable of 2-dimensional
arrangement of an IDATA type or an INT type, not only specification of one element
but specification of the whole arrangement and specification called the whole
sequence of 2-dimensional arrangement can be performed.

 Example:
 INT int0
 INT int1[2]
 INT int2[2][3]
 CSAVE frame0
 CSAVE frame0.bit
 CSAVE data0
 CSAVE data0[2]
 CSAVE int0
 CSAVE int1
 CSAVE int1[1]
 CSAVE int2
 CSAVE int2[1]
 CSAVE int2[1][1]

6.10 The variable of a system definition

In AP-Macro, there is a variable of the integer value of a system definition called errno.
this saves the error value generated when command lines, such as the CHECK
command, were performed. It is used in case it is used combining the CHECK
command and an IF ~ THEN command.

6.11. Sample macro

The sample of the macro file described in the AP-Macro language is shown below. Left
end “line number:” is the thing of facility for explanation among the macro file text, and it
must not describe for an actual macro file.

 1: #
 2: # Sample macro
 3: #
 4:
 5: # Variable declaration
 6: IFRAME fSend0 = {1, 0x123, 5, 0x00, 0x11, 0x22, 0x33, 0x44}
 7: IFRAME fSend1 = {1, 0x123, 3, 0x56, 0x78, 0x9a}
 8: IFRAME fSend2 = {1, 0x123, 1, 0xff}
 9: IFRAME fSend3 = {1, 0x123, 1, 0x55}

10: IFRAME fSend4 = {1, 0x123, 1, 0xee}
11: IFRAME fCmp = {0, 0x123, 0, 0x00, 0x42}
12: IFMASK fMask = {0x00, 0xFFFF, 0x00, 0x00, 0xFF, 0x00, 0x00, 0x00}
13: IFRAME fRecv
14: INT cnt
15:
16: # Procedure of fixed transmission
17: PROC teikiProc0
18: cnt = 3
19: WHILE cnt!=0 # 3 times repetition
20: SEND fSend1

 - 19 -

21: cnt -= 1
22: ENDWHILE
23:ENDPROC
24:
25: # 5 The procedure when you push down the key
26: PROC key5Proc
27: SEND fSend2
28: ENDPROC
29:
30: # disposition
31:
32: KEYGOSUB 5 key5Proc
33:
34: label0:
35: RECV fRecv # It waits for reception of the frame suitable for comditions
36: IF errno!=0 THEN error
37: CHECK fRecv fCmp fMask
38: IF errno==0 THEN label1
39: GOTO label0
40:
41: label1:
42: WAIT 500
43: SEND fSend2
44: IF errno!=0 THEN error
45: label2:
46: RECV fRecv # Processing is changed by the 1st byte of receiving data
47: IF errno!=0 THEN error
48: SWITCH fRecv.data[0]
49: CASE 0x11
50: TEIKI 0 teikiProc0 5000
51: GOTO label3
52: ENDCASE
53: CASE 0x22
54: SEND fSend3
55: IF errno!=0 THEN error
56: ENDCASE
57: CASE DEFAULT
58: SEND fSend3
59: IF errno!=0 THEN error
60: ENDCASE
61: ENDSWITCH
62: GOTO label2
63:
64: label3:
65: RECV fRecv # The 1st byte receiving data waits to 0x88
66: IF errno!=0 THEN error
67: IF fRecv.data[0]==0x88 success
68: SEND fSend3
69: IF errno!=0 THEN error
70: goto label3
71:
72: error:
73: EXIT
74: success:
75: EXIT

Explanation of each line

1st line ~ 5th line:
 They are a comment line and a blank line. It is ignored at the time of execution.

6th line ~ 14th line:
The variable used within this board view is declared. By AP-Macro, variable declaration
must be summarized and must be described before processing description.

 - 20 -

The part to which initialization data was abbreviated is made into 0, and is initialized. The
initialization data of an IFRAME type variable is packed sequentially from the left to this
broadcast bit, an address, message length, and data portion, and is set. The abridged data
portion is 0 too.
Moreover, in AP-Macro, all variables turn into a global variable. There is no concept of a
scope about a variable. As for this, the same is said of the inside of procedure. All variables
are referred to in common fair.

17th line ~ 23rd line:
It is procedure for using it as fixed processing later. Here, fSend1 IFRAME type variable is
transmitted.

25th line ~ 28th line:
It is procedure for using it as fixed processing later. Here, fSend2 IFRAME type variable is
transmitted.

30th line ~:
 it performs as main processing from here.

32nd line:
Key processing is defined. Key5Proc will come to be started if the key of ‘5’ of a number is
pushed after this.

33rd line:
The label is defined.

35th, 36th line:
It receives to a fRecv variable. In the following line, supposing it confirmed whether the
error took place by the RECV command of the last line and the error has taken place, it will
fly to the label error of the 72nd line.

37th ~ 39th line:
A fMask variable and “&” are taken and the comparison check of the frame received to the
fRecv variable is carried out with the contents of a fCmp variable. In the following line, it
confirms whether the result of the CHECK command of the last line is equal, it will fly to
label 1 of the 41st line. Otherwise, it returns to label 0 of the 34th line by the GOTO
command of the following line, and reception ~ check is repeated again.

42nd ~ 44th line:
The WAIT command a 500 milli second it waits and the contents of fSend2 variable are
transmitted. If a transmitting error takes place, it will fly to the label error of the 72nf line.

45th ~62nd line:
Here, processing is divided by the 1st byte of the data part of the received frame using the
SWITCH-CASE command. When the 1st byte of a data part is 0x11, it sets so that
teikiProc procedure may be started every 5 seconds by the TEIKI command, and
progresses to label 3 of the 64th line. When the 1st byte of a data part is 0x22, after
transmitting the contents of fSend3 variable, it returns to label 2 by GOTO, and waits for
reception again. CASE DEFAULT is the portion performed when the 1st byte of a data part
is not 0x11 or 0x22, either and is doing the thing same as contents as the case of 0x22.

64th ~ 70th line:
Here, processing is divided by the 1st byte of the data part of the received frame using the
IF ~ THEN command. When the 1st byte of a data part is 0x88, it files to success of the 74th
line and macroscopic processing is ended. When that is not right, after transmitting the

 - 21 -

contents of fSend3 variable, it returns to label3 of the 64th line again.

72nd line:
It is the label error which files when a reception error and a transmitting error take place in
macroscopic.

74th line:
It is the label success which files when all processing finally progress normally in
microscope.

 - 22 -

7. Communication specification

The following is shown the communication specification of RS-232C between AP-ALDM2
and a personal computer. All data is a binary form.

 AP-ALDM2 -> personal computer
 Broadcast bit 1 byte
 Master address 2 byte
 Message length 1 byte
 Data 1 ~ 32 byte (owing to the message length)
 Status 1 byte (00h is normal and the communication error occurs by 01h.)

 personal computer -> AP-ALDM2
 Broadcast bit 1 byte
 Slave address 2 byte
 Message length 1 byte
 Data 1 ~ 32 byte (owing to the message length)

Communication parameter
 Baud rate 115200bps
 Parity None
 Data bit 8 bit
 Stop bit 1 bit
 Flow control CTS/RTS flow control

